3.229 \(\int (a+a \sec (c+d x))^n \tan ^{\frac{3}{2}}(c+d x) \, dx\)

Optimal. Leaf size=114 \[ \frac{2^{n+\frac{7}{2}} \tan ^{\frac{5}{2}}(c+d x) \left (\frac{1}{\sec (c+d x)+1}\right )^{n+\frac{5}{2}} (a \sec (c+d x)+a)^n F_1\left (\frac{5}{4};n+\frac{3}{2},1;\frac{9}{4};-\frac{a-a \sec (c+d x)}{\sec (c+d x) a+a},\frac{a-a \sec (c+d x)}{\sec (c+d x) a+a}\right )}{5 d} \]

[Out]

(2^(7/2 + n)*AppellF1[5/4, 3/2 + n, 1, 9/4, -((a - a*Sec[c + d*x])/(a + a*Sec[c + d*x])), (a - a*Sec[c + d*x])
/(a + a*Sec[c + d*x])]*((1 + Sec[c + d*x])^(-1))^(5/2 + n)*(a + a*Sec[c + d*x])^n*Tan[c + d*x]^(5/2))/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0640971, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.043, Rules used = {3889} \[ \frac{2^{n+\frac{7}{2}} \tan ^{\frac{5}{2}}(c+d x) \left (\frac{1}{\sec (c+d x)+1}\right )^{n+\frac{5}{2}} (a \sec (c+d x)+a)^n F_1\left (\frac{5}{4};n+\frac{3}{2},1;\frac{9}{4};-\frac{a-a \sec (c+d x)}{\sec (c+d x) a+a},\frac{a-a \sec (c+d x)}{\sec (c+d x) a+a}\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^n*Tan[c + d*x]^(3/2),x]

[Out]

(2^(7/2 + n)*AppellF1[5/4, 3/2 + n, 1, 9/4, -((a - a*Sec[c + d*x])/(a + a*Sec[c + d*x])), (a - a*Sec[c + d*x])
/(a + a*Sec[c + d*x])]*((1 + Sec[c + d*x])^(-1))^(5/2 + n)*(a + a*Sec[c + d*x])^n*Tan[c + d*x]^(5/2))/(5*d)

Rule 3889

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Simp[(2^(m
 + n + 1)*(e*Cot[c + d*x])^(m + 1)*(a + b*Csc[c + d*x])^n*(a/(a + b*Csc[c + d*x]))^(m + n + 1)*AppellF1[(m + 1
)/2, m + n, 1, (m + 3)/2, -((a - b*Csc[c + d*x])/(a + b*Csc[c + d*x])), (a - b*Csc[c + d*x])/(a + b*Csc[c + d*
x])])/(d*e*(m + 1)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin{align*} \int (a+a \sec (c+d x))^n \tan ^{\frac{3}{2}}(c+d x) \, dx &=\frac{2^{\frac{7}{2}+n} F_1\left (\frac{5}{4};\frac{3}{2}+n,1;\frac{9}{4};-\frac{a-a \sec (c+d x)}{a+a \sec (c+d x)},\frac{a-a \sec (c+d x)}{a+a \sec (c+d x)}\right ) \left (\frac{1}{1+\sec (c+d x)}\right )^{\frac{5}{2}+n} (a+a \sec (c+d x))^n \tan ^{\frac{5}{2}}(c+d x)}{5 d}\\ \end{align*}

Mathematica [B]  time = 18.5428, size = 2072, normalized size = 18.18 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sec[c + d*x])^n*Tan[c + d*x]^(3/2),x]

[Out]

(2^(1 + n)*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^n*(a*(1 + Sec[c + d*x]))^n*(-1 + Tan[(c + d*x)/2])^(-1/2 - n)*(-2
*AppellF1[1/4, 1/2 + n, 1, 5/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(1/
2 + n)*(-1 + Tan[(c + d*x)/2])^(1/2 + n) + (AppellF1[1/2, 1/2 + n, 3/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d
*x)/2]] + AppellF1[1/2, 3/2 + n, 1/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]])*(1 - Tan[(c + d*x)/2])^(1
/2 + n)*(-1 + Tan[(c + d*x)/2]^2)^(1/2 + n))*Tan[c + d*x]^2)/(d*((2^n*Sec[c + d*x]^2*(Cos[(c + d*x)/2]^2*Sec[c
 + d*x])^n*(-1 + Tan[(c + d*x)/2])^(-1/2 - n)*(-2*AppellF1[1/4, 1/2 + n, 1, 5/4, Tan[(c + d*x)/2]^2, -Tan[(c +
 d*x)/2]^2]*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(1/2 + n)*(-1 + Tan[(c + d*x)/2])^(1/2 + n) + (AppellF1[1/2, 1/2
 + n, 3/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]] + AppellF1[1/2, 3/2 + n, 1/2 + n, 3/2, Tan[(c + d*x)/
2], -Tan[(c + d*x)/2]])*(1 - Tan[(c + d*x)/2])^(1/2 + n)*(-1 + Tan[(c + d*x)/2]^2)^(1/2 + n)))/Sqrt[Tan[c + d*
x]] + 2^n*(-1/2 - n)*Sec[(c + d*x)/2]^2*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^n*(-1 + Tan[(c + d*x)/2])^(-3/2 - n)
*(-2*AppellF1[1/4, 1/2 + n, 1, 5/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)
^(1/2 + n)*(-1 + Tan[(c + d*x)/2])^(1/2 + n) + (AppellF1[1/2, 1/2 + n, 3/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c
 + d*x)/2]] + AppellF1[1/2, 3/2 + n, 1/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]])*(1 - Tan[(c + d*x)/2]
)^(1/2 + n)*(-1 + Tan[(c + d*x)/2]^2)^(1/2 + n))*Sqrt[Tan[c + d*x]] + 2^(1 + n)*(Cos[(c + d*x)/2]^2*Sec[c + d*
x])^n*(-1 + Tan[(c + d*x)/2])^(-1/2 - n)*(-((1/2 + n)*AppellF1[1/4, 1/2 + n, 1, 5/4, Tan[(c + d*x)/2]^2, -Tan[
(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(1/2 + n)*(-1 + Tan[(c + d*x)/2])^(-1/2 +
 n)) - 2*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(1/2 + n)*(-1 + Tan[(c + d*x)/2])^(1/2 + n)*(-(AppellF1[5/4, 1/2 +
n, 2, 9/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + ((1/2 + n)*Appell
F1[5/4, 3/2 + n, 1, 9/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5) - 2*
(1/2 + n)*AppellF1[1/4, 1/2 + n, 1, 5/4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d*x]*Sec[(c + d*x)/
2]^2)^(-1/2 + n)*(-1 + Tan[(c + d*x)/2])^(1/2 + n)*(-(Sec[(c + d*x)/2]^2*Sin[c + d*x]) + Cos[c + d*x]*Sec[(c +
 d*x)/2]^2*Tan[(c + d*x)/2]) + (1/2 + n)*(AppellF1[1/2, 1/2 + n, 3/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d*x
)/2]] + AppellF1[1/2, 3/2 + n, 1/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]])*Sec[(c + d*x)/2]^2*(1 - Tan
[(c + d*x)/2])^(1/2 + n)*Tan[(c + d*x)/2]*(-1 + Tan[(c + d*x)/2]^2)^(-1/2 + n) - ((1/2 + n)*(AppellF1[1/2, 1/2
 + n, 3/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]] + AppellF1[1/2, 3/2 + n, 1/2 + n, 3/2, Tan[(c + d*x)/
2], -Tan[(c + d*x)/2]])*Sec[(c + d*x)/2]^2*(1 - Tan[(c + d*x)/2])^(-1/2 + n)*(-1 + Tan[(c + d*x)/2]^2)^(1/2 +
n))/2 + (-((3/2 + n)*AppellF1[3/2, 1/2 + n, 5/2 + n, 5/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]]*Sec[(c + d*x)/2
]^2)/6 + ((3/2 + n)*AppellF1[3/2, 5/2 + n, 1/2 + n, 5/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]]*Sec[(c + d*x)/2]
^2)/6)*(1 - Tan[(c + d*x)/2])^(1/2 + n)*(-1 + Tan[(c + d*x)/2]^2)^(1/2 + n))*Sqrt[Tan[c + d*x]] + 2^(1 + n)*n*
(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(-1 + n)*(-1 + Tan[(c + d*x)/2])^(-1/2 - n)*(-2*AppellF1[1/4, 1/2 + n, 1, 5/
4, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(1/2 + n)*(-1 + Tan[(c + d*x)/2]
)^(1/2 + n) + (AppellF1[1/2, 1/2 + n, 3/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]] + AppellF1[1/2, 3/2 +
 n, 1/2 + n, 3/2, Tan[(c + d*x)/2], -Tan[(c + d*x)/2]])*(1 - Tan[(c + d*x)/2])^(1/2 + n)*(-1 + Tan[(c + d*x)/2
]^2)^(1/2 + n))*Sqrt[Tan[c + d*x]]*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec
[c + d*x]*Tan[c + d*x])))

________________________________________________________________________________________

Maple [F]  time = 0.282, size = 0, normalized size = 0. \begin{align*} \int \left ( a+a\sec \left ( dx+c \right ) \right ) ^{n} \left ( \tan \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^n*tan(d*x+c)^(3/2),x)

[Out]

int((a+a*sec(d*x+c))^n*tan(d*x+c)^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^n*tan(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^n*tan(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \sec \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right )^{\frac{3}{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^n*tan(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c) + a)^n*tan(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**n*tan(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{n} \tan \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^n*tan(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^n*tan(d*x + c)^(3/2), x)